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1 Simple Groups, Burnside’s Formula, and p-Groups

1.1 Simple groups

Theorem 1.1. A, is simple for n > 5.

Proof. Proceed by induction on n. We know this for n = 5. Assume it for n—1 with n > 6.
The intersection of the stabilizer of i and A,, is G; = (S,)iNA, = A, for 1 <i < n,soG;
is simple. Let N < A,, with N # {e}. If there exists i € X, = {1,...,n} and 7 € N \ {e}
with 7(i) = 4, then NNG; # {e} and NN Gy < G;. So NNG; =Gy;ie. G < N.

For any o € A,, with o(i) = j, we have 0G;0~! = G;. Then 0 = (i j) (k () works
for some {k, ¢} N {i,j} = @ since n > 4. So G; < N since N < A,,. So every product of 2
transpositions is in NV since n > 5, so A, = N.

Take 7 € N. If there exists 7/ € N and i € X,, such that 7(i) = 7/(4), then 7(7')~1(i) =
i. Then 7 =7/, or N = A,,. Write 7 as a product of disjoint cycles. There are 2 cases:

1. 7 = (a1 ak)~-- where k > 3: Pick 0 € Ay such that o(a1) = a1,0(a2) =

az,0(a3) # az. Take 7/ := o7o~!. This works.

2. T = (a1 ag) . (am_1 am): Take 0 = (a1 ag) (a3 a5). Then 7 = o101 works
as well. So 7/(a1) = 7(a1) but 7 # 7. O

In general, the following theorem is true. We will not prove it.!

Theorem 1.2 (classification of finite simple groups). Every finite simple group is isomor-
phic to one of

1. Z/pZ with p prime

2. (simple) group of Lie type

3. A, forn>5

4. one of 26 sporadic simple groups

5. the Tits group

'The proof is thousands of pages long.



1.2 Burnside’s formula

For g € G and X a G-set, denote the set of fixed points of g as X9 ={x € X : gz = x}.
fSCG let XS={zeX:g-x=aVgeS}= MNyes X9. Recall that the stabilizer of z
isG,={9g€eG:9g-x=2} CG. Thenge G, < z € X9.

Theorem 1.3 (Burnside’s formula). Suppose G is finite, and X is a finite G-set. The
number r of G-orbits in X 1is
1
= — X9|.
r=1g 2 X

geG
Proof. Let S ={(g,2) :g € G,z € X,g-2 =z}. On one hand,
S =[[{(g,2) : 2 € X9},
geG

which is in bijection with X9. On the other hand,

S=[1{(g,22) : g € Gu},

zeX

which is in bijection with G,. So

DX =181=) 1G] =

geG zeX zeX

|G| 1
=G E .
|G - | Gl |G - x|
reX
Each orbit appears |G - z| times in this sum. So we get

Mx9 =6 > 1=|Glr O

geqG orbit reps.
This allows us to solve fun counting problems.

Example 1.1. How many ways are there to color the sides of a cube red and blue (that
look different under rotations)? Let G be the group of rotations of a cube. G acts on X,
the set of colorings of a cube. The number of orbits 7 is the number of colorings. |G| = 24.



Let’s write out what the elements are and the number of fixed points in each case.

So, by Burnside’s formula,

1
r=g(64+6:8+3-16+6-8+8 4)=10.

1.3 p-groups
Let p be prime.
Definition 1.1. A group G is a p-group if every element of G has a p-power order.
Example 1.2. Z/p"Z is a p-group.
Example 1.3. Qg and Dy are 2-groups.
Example 1.4. Here is an infinite p-group. {a/p":0<a <p"—1,n>1} CQ/Z.
Lemma 1.1. Let G have p-power order, and let X be a finite G-set. Then
1X] = [XC] (mod p).

Proof. Let S be a set of orbit representatives in X. Then

X[ =) "1G 2= [G:Ga]= > 1=]X% (mod p),

€S €S reXG

where X C S is the set of singleton orbits.



Theorem 1.4 (Cauchy). Let p be prime and G a finite group with p | |G|. Then G contains
an element of order p.

Proof. Let X ={(a1,...,ap) € GP :ay---ap =e}. Then S, O X by permuting the indices
o(at, .. ap) = (Ag(1)s -+ o(p))- Let 7= (1 2 --- p). Then H = (7) acts on X such
that X = X™ = {(a,a,...,a) | a? = e}. Note that X # @ since (e,...,e) € X, Also,
|X| = |G|P~' =0 (mod p). By the lemma, | X| =0 (mod p), so since X # @, X has
another element; i.e. there exists a # e with a? = e. O

Corollary 1.1. If G is a finite p-group, then G has p-power order.
Proposition 1.1. If G is a nontrivial finite p-group, then Z(G) # {e}.

Proof. 1f Z(G) = {e}, then the class equation gives
Gl =14+ Co=1+) [G:Z]=1 (modp),
xeS zeS

where S is a set of representatives of nontrivial conjugacy classes. Since G has p-power
order, we get |G| = 1. O

Theorem 1.5. Every group of order p? is abelian.

Proof. Let |G| = p®. If G is not abelian, then Z(G) has order p. Then Z(G) = (a), where
a has order p. Let b ¢ (a). Then b has order p, and G = (a,b). Note that b commutes with
a because a € Z(G). But b commutes with itself, so b € Z(G). This is a contradiction. [
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