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1 Simple Groups, Burnside’s Formula, and p-Groups

1.1 Simple groups

Theorem 1.1. An is simple for n ≥ 5.

Proof. Proceed by induction on n. We know this for n = 5. Assume it for n−1 with n ≥ 6.
The intersection of the stabilizer of i and An is Gi = (Sn)i∩An ∼= An−1 for 1 ≤ i ≤ n, so Gi
is simple. Let N E An with N 6= {e}. If there exists i ∈ Xn = {1, . . . , n} and τ ∈ N \ {e}
with τ(i) = i, then N ∩Gi 6= {e} and N ∩G1 E Gi. So N ∩Gi = Gi; i.e. Gi ≤ N .

For any σ ∈ An with σ(i) = j, we have σGiσ
−1 = Gj . Then σ =

(
i j

) (
k `

)
works

for some {k, `} ∩ {i, j} = ∅ since n ≥ 4. So Gj ≤ N since N E An. So every product of 2
transpositions is in N since n ≥ 5, so An = N .

Take τ ∈ N . If there exists τ ′ ∈ N and i ∈ Xn such that τ(i) = τ ′(i), then τ(τ ′)−1(i) =
i. Then τ = τ ′, or N = An. Write τ as a product of disjoint cycles. There are 2 cases:

1. τ =
(
a1 · · · ak

)
· · · where k ≥ 3: Pick σ ∈ Ak such that σ(a1) = a1, σ(a2) =

a2, σ(a3) 6= a3. Take τ ′ := στσ−1. This works.

2. τ =
(
a1 a2

)
· · ·
(
am−1 am

)
: Take σ =

(
a1 a2

) (
a3 a5

)
. Then τ ′ = στσ−1 works

as well. So τ ′(a1) = τ(a1) but τ ′ 6= τ .

In general, the following theorem is true. We will not prove it.1

Theorem 1.2 (classification of finite simple groups). Every finite simple group is isomor-
phic to one of

1. Z/pZ with p prime

2. (simple) group of Lie type

3. An for n ≥ 5

4. one of 26 sporadic simple groups

5. the Tits group
1The proof is thousands of pages long.
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1.2 Burnside’s formula

For g ∈ G and X a G-set, denote the set of fixed points of g as Xg = {x ∈ X : g · x = x}.
If S ⊆ G, let XS = {x ∈ X : g · x = x ∀g ∈ S} =

⋂
g∈S X

g. Recall that the stabilizer of x
is Gx = {g ∈ G : g · x = x} ⊆ G. Then g ∈ Gx ⇐⇒ x ∈ Xg.

Theorem 1.3 (Burnside’s formula). Suppose G is finite, and X is a finite G-set. The
number r of G-orbits in X is

r =
1

|G|
∑
g∈G
|Xg|.

Proof. Let S = {(g, x) : g ∈ G, x ∈ X, g · x = x}. On one hand,

S =
∐
g∈G
{(g, x) : x ∈ Xg},

which is in bijection with Xg. On the other hand,

S =
∐
x∈X
{(g, zx) : g ∈ Gx},

which is in bijection with Gx. So∑
g∈G
|Xg| = |S| =

∑
x∈X
|Gx| =

∑
x∈X

|G|
|G · x|

= |G|
∑
x∈X

1

|G · x|
.

Each orbit appears |G · x| times in this sum. So we get∑
g∈G
|Xg| = |G|

∑
orbit reps.

1 = |G|r.

This allows us to solve fun counting problems.

Example 1.1. How many ways are there to color the sides of a cube red and blue (that
look different under rotations)? Let G be the group of rotations of a cube. G acts on X,
the set of colorings of a cube. The number of orbits r is the number of colorings. |G| = 24.
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Let’s write out what the elements are and the number of fixed points in each case.

So, by Burnside’s formula,

r =
1

24
(64 + 6 · 8 + 3 · 16 + 6 · 8 + 8 · 4) = 10.

1.3 p-groups

Let p be prime.

Definition 1.1. A group G is a p-group if every element of G has a p-power order.

Example 1.2. Z/pnZ is a p-group.

Example 1.3. Q8 and D4 are 2-groups.

Example 1.4. Here is an infinite p-group. {a/pn : 0 ≤ a ≤ pn − 1, n ≥ 1} ⊆ Q/Z.

Lemma 1.1. Let G have p-power order, and let X be a finite G-set. Then

|X| ≡ |XG| (mod p).

Proof. Let S be a set of orbit representatives in X. Then

|X| =
∑
x∈S
|G · x| =

∑
x∈S

[G : Gx] ≡
∑
x∈XG

1 = |XG| (mod p),

where XG ⊆ S is the set of singleton orbits.
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Theorem 1.4 (Cauchy). Let p be prime and G a finite group with p | |G|. Then G contains
an element of order p.

Proof. Let X = {(a1, . . . , ap) ∈ Gp : a1 · · · ap = e}. Then Sp � X by permuting the indices
σ(a1, . . . , ap) = (aσ(1), . . . , aσ(p)). Let τ =

(
1 2 · · · p

)
. Then H = 〈τ〉 acts on X such

that XH = Xτ = {(a, a, . . . , a) | ap = e}. Note that XH 6= ∅ since (e, . . . , e) ∈ XH . Also,
|X| = |G|p−1 ≡ 0 (mod p). By the lemma, |XH | ≡ 0 (mod p), so since XH 6= ∅, XH has
another element; i.e. there exists a 6= e with ap = e.

Corollary 1.1. If G is a finite p-group, then G has p-power order.

Proposition 1.1. If G is a nontrivial finite p-group, then Z(G) 6= {e}.

Proof. If Z(G) = {e}, then the class equation gives

|G| = 1 +
∑
x∈S

Cx = 1 +
∑
x∈S

[G : Zx] ≡ 1 (mod p),

where S is a set of representatives of nontrivial conjugacy classes. Since G has p-power
order, we get |G| = 1.

Theorem 1.5. Every group of order p2 is abelian.

Proof. Let |G| = p2. If G is not abelian, then Z(G) has order p. Then Z(G) = 〈a〉, where
a has order p. Let b /∈ 〈a〉. Then b has order p, and G = 〈a, b〉. Note that b commutes with
a because a ∈ Z(G). But b commutes with itself, so b ∈ Z(G). This is a contradiction.
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